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Abstract: We conduct a comprehensive study of some new or recently developed parametric 
methods to estimate loss given default using a common data set. We first propose to use a 
smearing estimator, a Monte Carlo estimator, and a global adjustment to refine transformation 
regressions that address loss given default boundary values. Although these refinements only 
marginally improve model performance, the smearing and Monte Carlo estimators help reduce 
the sensitivity of transformation regressions to the adjustment factor. We then implement five 
parametric models (two-step, inflated beta, Tobit, censored gamma, and two-tier gamma 
regressions) that are not thoroughly studied in the literature but are all designed to fit the unusual 
bounded bimodal distribution of loss given default. We find that complex parametric models do 
not necessarily outperform simpler ones, and the non-parametric models may be less 
computationally burdensome. Our findings suggest that complicated parametric models may not 
be necessary when estimating loss given default. 
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1. Introduction 

 

Probability of default (PD) and loss given default (LGD) are the two key determinants of the 

premium of risky bonds, credit default swap spreads, and credit risks of loans and other credit 

exposures. They are also among the key parameters in the Basel internal ratings-based 

framework for banks’ minimum regulatory capital requirements.1 Thus, a good understanding of 

PD and LGD is crucial for fixed-income investors, rating agencies, bankers, bank regulators, and 

academics. Between the two parameters, LGD is relatively more understudied partly because of 

the lack of data and risk drivers for it, although LGD research has been growing in recent years. 

 

Besides data limitations and the lack of risk drivers, another challenge in modeling LGD is that 

the LGD values have an unusual distribution. LGD values are often bounded between 0 and 1 

(including observations of exactly 0 or 1), and the distribution tends to be bimodal with modes 

close to the boundary values. These distributional characteristics make standard statistical 

models, such as the linear regression model estimated with ordinary least squares (OLS), 

theoretically inappropriate for LGD modeling. 

 

The importance of accounting for the unusual distribution of LGD is widely acknowledged in the 

literature,2 and researchers have attempted to use various statistical methods to address the 

aforementioned challenges. In general, the semi-parametric and non-parametric methods are 

found to outperform parametric methods (see Bastos [2010], Loterman et al. [2012], Qi and Zhao 

[2011], Altman and Kalotay [2014], Hartmann-Wendels, Miller, and Tows [2014], and Tobback 

et al. [2014]). The papers comparing various parametric methods in the literature, however, are 

far from exhaustive and do not compare some of the newer parametric models that might be 

more suitable for fitting the unusual LGD distribution (e.g., the inflated beta distribution [Ospina 

and Ferrari (2010a, b)] and the gamma regressions [Sigrist and Stahel (2011)]). How these 

                                                 
1 The Basel II risk parameters are PD, LGD, and exposure at default. Effective maturity is also needed for corporate, 
sovereign, and bank exposures. 
 
2 See, for example, Hu and Perraudin (2002), Siddiqi and Zhang (2004), Gupton and Stein (2005), Dermine and 
Neto de Carvalho (2006), Bastos (2010), Hamerle et al. (2011), Hlawatsch and Ostrowski (2011), and Bellotti and 
Crook (2012). 
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sophisticated parametric models perform relative to the simpler parametric models or the non-

parametric models that may be less computationally burdensome is not clear from the literature.3 

 

We have two main aims in this paper. First, we propose some refinements to the transformation 

regression methodology that has been used extensively in the literature to explore whether the 

performance of the current transformation regression methods can be improved. In the literature, 

an unmentioned criticism of the current transformation regression methods is that the LGD 

predictions can result in biased estimates due to the inherent nonlinearities in the transformations 

functions used. To remedy this issue, we propose a smearing estimator based on Duan (1983) 

and a Monte Carlo (MC) estimator to correct for these biases. Furthermore, we introduce another 

methodology we call the “global adjustment approach.” Transformation regressions typically 

first apply adjustment factors to LGD values of 0 and 1. Qi and Zhao (2011) show, however, that 

a small adjustment factor leads to poor model performance. On the other hand, a larger 

adjustment factor cannot preserve the rank ordering of the raw LGD values, which could 

potentially affect statistical inference and predictive performance. The global adjustment 

approach we propose here applies an adjustment factor to all the LGD observations (and not just 

the boundary values) which retains the rank ordering in LGD values.  

 

Second, we investigate the performance of five recent parametric methods that are designed 

specifically to fit the unusual distribution of LGD. These include the two-step regression, 

inflated beta regression (Ospina and Ferrari [2010a, b]), Tobit regression, censored gamma 

regression (Sigrist and Stahel [2011]), and two-tiered gamma regression (Sigrist and Stahel 

[2011]) models. These models share a similar structure in that they explicitly model the 

probability of LGD being 0, 1, or a value in between, but they differ in distributional 

assumptions. Our primary interest is in whether these recent parametric methods can outperform 

simpler parametric methods, including transformation regressions, standard linear regression, 

and fractional response regression (FRR) from Papke and Wooldridge (1996).  

                                                 
3 A recent study by Yashkir and Yashkir (2013) compares some of the new parametric LGDs models (e.g., inflated 
beta and censored gamma) and finds much similarity in the goodness of fit among these new parametric models. 
Yashkir and Yashkir (2013), however, compare only a few models, and it is not clear how their models compare 
with other simpler parametric models or non-parametric models. Furthermore, their set of explanatory variables does 
not include the seniority index, the most important determinant of LGD shown in Qi and Zhao (2013). 
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We use the same data set and explanatory variables as in Qi and Zhao (2011) so that more 

general conclusions about model performance can be drawn by comparing the models studied in 

this paper with those investigated by Qi and Zhao (2011). In general, we find that in terms of 

model fit, all the methods investigated in this paper perform similarly, with in-sample R-squared 

ranging from 0.449 to 0.458 and slightly worse out-of-sample R-squared ranging from 0.444 to 

0.452.  

 

A few additional observations can be made based on our extensive empirical analysis. Regarding 

our first aim, the three proposed refinements to the transformation regressions can help improve 

model performance. Although the improvement is only marginal, the smearing and MC 

estimators can substantially reduce the sensitivity to the value of the adjustment factor in 

transformation regressions. Although the global adjustment reduces the sensitivity, the 

transformation regressions are still sensitive to the value of the adjustment factor. 

 

Regarding our second aim, we compare model complexity and computational burden across 

alternative models and find that simpler parametric models do not necessarily underperform the 

more complex ones in predictive accuracy and ability to model the bimodal LGD distribution. 

Although all the methods perform quite similarly, the two-step approach has the best in- and out-

of-sample performance, followed by the two-tiered gamma regression. The inflated beta 

regression performs very closely to the two-tiered gamma regression in sample and slightly 

outperforms all the transformation regressions (including the refined ones) except for the 

smearing estimator out of sample. The censored gamma and Tobit regressions perform similarly, 

with the worst performance among all the methods investigated here. The predictive accuracies 

of the censored gamma and Tobit models are almost identical, despite the high complexity and 

computational burden of the censored gamma regression. Estimation of the two-tiered gamma 

model is challenging because of the complicated likelihood function that is sensitive to the 

choice of optimization algorithm and the starting values. The two-tiered gamma model does not 

perform better than the much simpler and easier two-step regression model based on our sample 

and model setup. Overall, all methods investigated in this paper outperform the linear regression 

but underperform the FRR and the nonparametric methods investigated in Qi and Zhao (2011). 
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The findings and conclusions of our study are based on one data set. The relative performance of 

various models is likely to change if they are applied to different LGD data sets with different 

sample sizes, distributions, and risk drivers. Thus, it is important for modelers and researchers to 

be aware of the wide range of possible LGD models and methods, and to choose the one that is 

appropriate for their particular data set, balancing performance, complexity and computational 

burden via model validation and benchmarking.  

 

The rest of this paper proceeds as follows. In the section 2, we describe the various models and 

methods investigated in this study. Section 3 provides details on empirical results and model 

comparison. Section 4 concludes the paper. 

 

2. Methodology Description 

 

This section discusses alternative methods we use in this study to estimate LGD. In the following 

subsections, LGD stands for the raw observed values of LGD, and L stands for the LGD values 

after applying adjustment factors (more details in subsequent sections). All of the models, with 

the exception of the two-step approach, are estimated by maximum likelihood. We provide the 

density functions for the data, which can easily be used to form the log likelihood functions. The 

mean LGD predictions are obtained by plugging in the maximum likelihood estimates into the 

population mean functions. 

 

2.1 Transformation Regressions 

 

The general idea of transformation regressions is to first convert the LGD observations from 

[0, 1] to (0, 1) with an adjustment factor, transform these adjusted values into the real line with a 

transformation function, and then fit linear regressions on the transformed values. In the current 

literature, the fitted values are then retransformed into LGD predictions by applying the inverse 

of the transformation function to them. This approach is used in Siddiqi and Zhang (2004), 
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Gupton and Stein (2005), Hamerle et al. (2011), Qi and Zhao (2011), and Hlawatsch and 

Ostrowski (2011).  

 

Before we describe our refinements, we describe transformation regressions more formally. Let 

( )1,0∈iL denote the i -th LGD observation after the adjustment factors have been applied. Let 

iZ  denote a transformed value of iL , where ( );i iZ h L a= , or ( )1 ;i iL h Z a−= . The function h  

and its inverse 1h−  are assumed to be nonlinear, monotonic, and continuously differentiable. We 

refer to h  as the transformation and 1h−  as the retransformation. The vector a  consists of 

known constants (i.e., the predetermined parameters in the transformation/retransformation 

functions). The codomain of iZ  is chosen to be the entire real line, in which case, it is 

reasonable to use linear regression models for iZ , i i iZ x eβ= + . The usual OLS estimates of the 

regression coefficients β  and the variance of the error term s 2 , as well as the prediction for the 

transformed scale  Z xi i= β , are unbiased and also consistent if the design matrix is 

asymptotically non-degenerate. We refer to this as the “transformation regression.” 

 

As in Qi and Zhao (2011), we use two particular transformation functions: an inverse standard 

Gaussian cumulative distribution function (CDF) and a combination of inverse standard 

Gaussian and beta CDFs, which leads to the inverse Gaussian regression model (IGR) and 

inverse Gaussian regression with beta transform model (IGR-BT). For IGR, the vector 𝑎 is equal 

to (0, 1), representing a mean of 0 and a variance of 1 for the standard Gaussian distribution; 

similarly, for IGR-BT, the vector 𝑎 consists of the same mean and variance, but also the two beta 

distribution parameters calibrated to the LGD data. 

 

2.1.1 Refinements to Transformation Regressions 

 

The transformation regressions are simple, straightforward, and easy to implement; however, the 

optimal predictions on the untransformed scale are generally not equal to the inversions of the 

optimal predictions on the transformed scale. It seems natural to obtain Li , the predictor for Li , 
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by inverting  Z xi i= β  to produce the retransformed predictor ( ) ( )1 1 ˆˆ ˆ ; ;i i iL h Z a h x aβ− −= = , 

which we call the naïve estimator in the rest of this paper. This is the approach taken in the 

current LGD literature. The naïve estimator ( )1 ˆˆ ;i iL h x aβ−= , however, is neither unbiased nor 

consistent for ( )E Li  unless the transformation is linear. Obviously, the transformation functions 

in the LGD studies are nonlinear (e.g., the inverse Gaussian CDF in IGR). The literature (e.g., 

Duan [1983]) widely recognizes that, as long as the transformation is not linear, even if the true 

parameters are known, ( )1
ih x β−  is not the correct “estimate” of ( )E Li : 

( ) ( ) ( )1 1( ; ) ;i i i iE L E h x e a h x aβ β− −= + ≠  .                                              (1) 

 

The main difficulty in obtaining the optimal predictions lies in finding the mean of 

( )1 ;i i iL h x e aβ−= + . Note that the distribution for Li is easy to obtain (e.g., by using the 

Jacobian change of variables theorem). Its mean and other population quantities of interest, 

however, do not generally have closed form solutions. We propose two ways of obtaining the 

optimal predictions ( )E L xi i| in this subsection: a smearing estimator and an MC estimator. 

 

2.1.1.1 A Smearing Estimator 

 

Duan (1983) proposes a non-parametric smearing estimate for the mean 

( ) ( ) ( )1| ;
ii i i i eE L x h x e a f t dtβ−= +∫ . Its intuition can be understood in three steps. First, the 

empirical CDF of the estimated residuals is computed as  

( ) ( )
1

1ˆ ˆ
N

N j
j

F r I e r
N =

= ≤∑                          (2) 

where  e Z xj j j= − β , N is the number of observations, and ( )I A  denotes the indicator function 

of the event “ A”. Second, using the empirical CDF, an estimate of the mean is expressed as  

( ) ( )1

1

1 ˆ| ;
N

i i i j
j

E L x h x e a
N

β−

=

= +∑                                                              (3) 
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Because β  is unknown, the third step is to plug in the OLS estimator and obtain 

( ) ( )1

1

1 ˆˆ ˆ| ;
N

i i i j
j

E L x h x e a
N

β−

=

= +∑                                                              (4) 

which is referred to as Duan’s smearing estimator. This is a simple quantity to compute in 

practice. One basically computes the N OLS residuals, plugs the residuals and OLS estimate of 

β  into (4), and then takes the sample average to produce the estimate. 

 

Rigorous proofs for the consistency of (4) are in Duan (1983). Note that this is a non-parametric 

estimate as the normality of e j  is not used. This can be viewed as inexpensive insurance against 

possible departures from normality. 

 

2.1.1.2  An MC Estimator 

 

MC methods can also be used to estimate the conditional mean. To understand our MC 

estimator, first note that if G  independent draws of ei  can be obtained from f ei
, then the sample 

average of  

( )1 ( )

1

1 ;
G

g
i i

g
h x e a

G
β−

=

+∑                                                                               (5) 

converges to the conditional mean from the law of large numbers. Because β  and σ 2  are 

unknown, we can plug in the OLS estimators into (5) and form the MC estimator 

( ) ( )1 ( )

1

1 ˆ ˆ| ;
G

g
i i i i

g
E L x h x e a

G
β−

=

= +∑                                                           (6) 

This quantity converges to the desired quantity for a large G  by application of the continuous 

mapping theorem and law of large numbers. 
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Succinctly, for each observation i , the MC algorithm is as follows: 

 

1. Use s 2 from the OLS estimation, draw G values of the disturbance term ei from ( )Ν 0 2, s  

and denote them as  ,  , . . . , ( ) ( ) ( )e e ei i i
G1 2 . 

2. Use β  from the OLS estimation, obtain the G  values of 

( ) ( ) ( )1 (1) 1 (2) 1 ( )ˆ ˆ ˆˆ ˆ ˆ, , . . . , G
i i i i i ih x e h x e h x eβ β β− − −+ + + . 

3. Compute ( )~ |E L xi i , which equals the sample average of the G  values from the previous 

step. 

 

Note that this approach is different from the smearing estimator as the MC method uses the 

normality assumption. 

 

2.1.2 Transformation Regressions With Global Adjustment  

 

Usually the small adjustment factor is applied only to the boundary LGD values of 0 or 1 prior to 

fitting the transformation regressions. This adjustment approach can create some inconsistency 

between adjusted values and unadjusted values and may result in LGD values that do not rank 

order, particularly if a large adjustment factor ε  is used. Qi and Zhao (2011) find the 

transformation regression results are very sensitive to the magnitude of ε , and it is not clear how 

much of the sensitivity might be attributed to the adjustment factor that applies only to LGD 

values of 0 and 1. We aim to shed light on this question by investigating an alternative 

adjustment method in this paper. Specifically, we propose to adjust all LGD observations from 

[0, 1] to (b, 1-b) through 

(1 2 )L b b LGD= + − ×                                                                                (7) 

where 𝑏 is a predetermined adjustment factor. These adjusted LGDs are transformed with the 

function ℎ and used in the transformation regressions. The fitted values from the regressions, 𝐿�, 

are retransformed to the scale (0, 1), and the retransformed values are then converted back to 

[0, 1] by applying the following reverse adjustment:  
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( )
( )
L̂ ˆ
1 2

b
LGD

b

−
=

−
                  (8) 

We investigate various values of b  in section 3. We call this approach “global adjustment” as 

the adjustment factor b is applied to all LGD observations. We call the typical adjustment 

approach in the literature (e.g., Qi and Zhao [2011] and Altman and Kalotay [2014]) “local 

adjustment” because the adjustment factor ε  is applied only to the LGD values of 0 or 1. The 

LGD estimates produced from the reverse adjustment in equation 8 above can be less than 0 if 

𝐿�< b, or greater than 1 if 𝐿�>1− b. The LGD estimates can be floored at 0 and capped at 1 after 

the reverse adjustment if desired.  

 

2.2 Models to Account for the Unusual LGD Distribution 

 

We discuss five methods that specifically account for the unusual bounded and bimodal 

distribution of LGD. 

 

2.2.1 Two-Step Approach 

 

This approach allows for the possibility that the processes governing whether the LGD equals 

0 or 1, or any value in between, may be different. This approach is similar to the two-step 

estimation in Gurtler and Hibbeln (2013). We estimate LGDs in two steps. In step 1, we run an 

ordered logistic regression on the probability of LGD falling into one of three categories: 

0, (0, 1), or 1  

( )
( ) ( ) ( )
( )

0 0

0,1 1 0

1 1

0

0,1

1 1

i
i

i
i i i

i
i

P Logistic x if LGD

P P Logistic x Logistic x if LGD

P Logistic x if LGD

γ β

γ β γ β

γ β

 = − =
= = − − − ∈


= − − =

    (9) 

where Logistic() denotes the logistic function, and 𝛾0 and 𝛾1 are cut-point parameters to be 

estimated. This first step is used to account for the mass concentrated at 0 or 1.  
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In step 2, we run OLS using all the LGD observations within the range (0, 1) on the explanatory 

variables, and we call the predicted LGD from the second regression βµ ˆˆ i
i x=  for observations 

in (0, 1). We then predict the ith LGD as 

( ) ( )i 0 1 1
ˆ ˆ ˆ ˆˆ E LGD 1i i i iP P Pµ= × − − +                                                           (10) 

Note that the predicted LGD generated from equation (10) is a weighted average of the model 

outputs from steps 1 and 2. It is not mathematically bounded between 0 and 1.  

 

2.2.2  Inflated Beta Regression 

 

Ospina and Ferrari (2010a) propose inflated beta distributions that are mixtures between a beta 

distribution and a Bernoulli distribution degenerated at 0, 1, or both 0 and 1. Ospina and Ferrari 

(2010b) then further develop inflated beta regressions by assuming the response distribution to 

follow the inflated beta and by incorporating explanatory variables into the mean function. 

Ospina and Ferrari (2010a) propose that the probability function for the ith observation is 

( ) ( ) ( ) ( )
0

0 1 0 1

1

0

; , , , 1 ; , 0,1

1

i

i i i i i i
i

i

P if LGD

P LGD P P P P f LGD if LGD

P if LGD

µ φ µ φ

 =
= − − ∈


=

   (11) 

where ,0,10 ><< φµ i  and ( ).f  is a beta probability density function (PDF), i.e., 

( ) ( )
( ) ( )( ) ( )( )1 11; , 1

1

iii
i i

f LGD LGD LGD µ φµ φφ
µ φ

µ φ µ φ
− −−Γ

= −
Γ Γ −

          (12) 

Note that iµ  is the mean of the beta distribution, and φ  is interpreted as a dispersion parameter. 

The mean function is ( ) ( )E LGD P P Pi
i i i i= + − −1 0 11µ . The connection between explanatory 

variables ix  and the expected LGD is through the three equations as follows: 
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  0 / (1 )i i ix x xiP e e eα α β= + +          (13) 

1 / (1 )i i ix x xiP e e eβ α β= + +        (14) 

/ (1 )i ix xi e eγ γµ = +         (15) 

where the parameters , ,α β γ  are model coefficients. These coefficients along with 𝜙 are 

estimated by maximizing the log likelihood function. For details on the inflated beta regression 

in general, see Ospina and Ferrari (2010b), Pereira and Cribari-Neto (2010), and Yashkir and 

Yashkir (2013).4  

 

Note that the two-step approach and the inflated beta regression are quite similar. They differ in 

that the parameters of the inflated beta model are estimated from a parametric model, while the 

parameters from the two-step approach are estimated in two separate steps. The two-step method 

might perform better than the inflated beta regression due to its flexibility in predicting the 

observations in (0, 1).5 On the other hand, because we assume a parametric model, equation (11) 

guarantees that the predicted LGDs are within the [0, 1] boundary, while such an outcome is not 

ensured in equation (10). 

 

2.2.3 Tobit Regression 

 

Tobit regression is often used to describe the relationship between a random variable that is 

censored and some explanatory variables. In our case, the basic assumption in this modeling 

approach is that our dependent variable LGD is censored to the closed interval [0, 1]. Observed 

LGD is a censored version of the latent variable 𝐿∗, where 𝐿∗ may be less than 0 or greater than 1 

                                                 
4 Our parameterizations of the probabilities in (15) and (16) are slightly different from the ones in Yashkir and 
Yashkir (2013). Our parameterizations ensure that each probability is positive and that the mixture weights in (13) 
sum to 1, while the parameterizations in Yashkir and Yashkir (2013) do not guarantee that 𝑃0𝑖+ 𝑃1𝑖<1, resulting in 
mixture weights in (13) that may be negative for 𝐿 ∈ (0, 1).  
 
5 In the two-step approach, 

iµ̂  is estimated freely without considering the ordered logit in the second step while 
iµ̂  

in the beta regression is estimated from the likelihood derived from the beta distribution. Given that the data 
generating process is unknown, the latter case might be too restrictive in its form and the first approach is more 
flexible. 
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for various reasons. The original data from Moody’s Ultimate Recovery Database include some 

observations with negative LGDs, and we floor those LGDs, which leads to censoring from 

below at 0. 𝐿∗ can also be greater than 1 if the lender extends more loans to the obligor post 

default, which leads to censoring from above at 1. The Tobit model can be estimated by standard 

statistical software. Mathematically, the Tobit model for LGD is 

( )
[ ] ( )

( ) ( )
[ ] ( )

0 /

; , ( ) / / , 0 1

1 1 (1 ) /

i

i i i

i

P LGD

P LGD P LGD l l dl l dl if l

P LGD

θ σ

θ ϕ θ σ σ

θ σ

 = = Φ −
= ∈ + = − < <   


= = −Φ −

     (16) 

where ( ).ϕ  and ( )Φ .  are the PDF and CDF of a standard normal random variable, respectively, 

and βθ ii x= . See Amemiya (1984) for an expression of the mean function and associated 

details. 

 

2.2.4 Censored Gamma Regression 

 

Sigrist and Stahel (2011) introduce gamma regression models to estimate LGD. The probability 

function for the i th observation is 

( )
[ ] ( )

( ) ( )
[ ] ( )

0 , ,

; , , , , , , 0 1

1 1 1 , ,

i

i i i

i

P LGD G

P LGD P LGD l l dl g l dl if l

P LGD G

ξ α θ

ξ α θ ξ α θ

ξ α θ

 = =
= ∈ + = + < <   


= = − +

 (17) 

where ( ) ( )
g u u ei

i

u i; , /α θ
θ αα

α θ= − −1 1

Γ
 and ( ) ( )G u g x dxi i

u
; , ; ,α θ α θ= ∫0  are the PDF and CDF 

for a gamma random variable, respectively. Also, α > 0, ξ > 0 , and θi > 0 . Note that Sigrist and 

Stahel (2011) define the underlying latent variable to follow a gamma distribution shifted by – 𝜉. 

The use of a gamma distribution with a shifted origin, instead of a standard gamma distribution, 

is motived by the fact that the lower censoring occurs at zero. 

 

The connection between explanatory variables ix  and the expected LGD for the ith observation 

is through the linear equations as follows: 
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*

*

log ,
log ,
log i ix

α α

ξ ξ
θ β

=


= 
= 

                                                                           (18) 

where β  is the vector of model coefficients. These coefficients and the parameters α * and ξ* are 

estimated by maximizing the log likelihood function. The resulting estimates are then used to 

obtain LGD predictions: 𝐸(𝐿𝐺𝐷𝑖) =  𝛼𝜃𝑖[𝐺(1 + 𝜉,𝛼 + 1,𝜃𝑖) − 𝐺(𝜉,𝛼 + 1,𝜃𝑖)] + (1 + 𝜉)�1 −

𝐺(1 + 𝜉,𝛼,𝜃𝑖)� −  𝜉(1 − 𝐺(𝜉,𝛼,𝜃𝑖)). For more detail on the censored gamma regression, refer 

to Sigrist and Stahel (2011).  

 

The censored gamma regression model is quite similar to a Tobit model. The only difference is 

that the underlying latent variable in the censored gamma model has a shifted gamma 

distribution, while the Tobit model assumes a normal distribution for the latent variable. It is not 

trivial to maximize the likelihood function of the censored gamma regression model analytically 

or numerically, while Tobit models can be fairly easily estimated in most statistical software. 

 

2.2.5 Two-Tiered Gamma Regression 

 

Sigrist and Stahel (2011) extend the censored gamma model into the two-tiered gamma model. 

This extension allows for two underlying latent variables, one that governs the probability of 

LGD being 0 and another for LGD being in (0, 1). The extension is useful in that it allows each 

latent variable to have its own set of explanatory variables and parameters. 

 

More specifically, the two-tiered gamma regression assumes that there are two latent variables: 

the first latent variable, L1
* , which follows a shifted gamma distribution with density function 

( )g L i1
* , , ~+ ξ α θ , and the second variable, L2

* , which is a shifted gamma distribution lower 

truncated at zero with the density function ( )g L i2
* , ,+ ξ α θ . These two latent variables are then 

related to L  through 
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The distribution of LGD can be characterized as follows: 
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The connection between the explanatory variables ix  and the expected LGD is through the linear 

equations as follows: 

*

*

log
log

α α

ξ ξ

= 


= 
                                                                             (21) 

log i ixθ β=                                                                       (22) 

log i ixθ γ=                                                                                   (23) 

where β ,γ  are vectors of model coefficients. These coefficients and the parameters α * andξ*

are estimated by maximizing the log likelihood. The mean LGD is calculated as  

𝐸(𝐿𝐺𝐷) = Pr(𝐿𝐺𝐷 = 1) + Pr�𝐿𝐺𝐷 ∈ (0, 1)� 𝐸(𝐿𝐺𝐷|𝐿𝐺𝐷 ∈ (0, 1)) 

where 

Pr(𝐿𝐺𝐷 = 1) = (1 − 𝐺(1 + 𝜉,𝛼,𝜃))
1 − 𝐺(𝜉,𝛼,𝜃�)
1 − 𝐺(𝜉,𝛼,𝜃)

  

Pr(𝐿𝐺𝐷 = 0) = 𝐺(𝜉,𝛼,𝜃�) 

Pr�𝐿𝐺𝐷 ∈ (0, 1)� = 1 − Pr(𝐿𝐺𝐷 = 0) −  Pr(𝐿𝐺𝐷 = 1) 
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𝐸�𝐿𝐺𝐷�𝐿𝐺𝐷 ∈ (0, 1)�

=  
𝛼𝜃�𝐺(1 + 𝜉,𝛼 + 1,𝜃) − 𝐺(𝜉,𝛼 + 1, 𝜃)� − 𝜉(𝐺(1 + 𝜉,𝛼,𝜃) − 𝐺(𝜉,𝛼,𝜃))

𝐺(1 + 𝜉,𝛼,𝜃) − 𝐺(𝜉,𝛼, 𝜃)  

As this expectation is not provided in Sigrist and Stahel (2011), we provide the derivation in the 

appendix. For more information on the two-tiered gamma regression, refer to Sigrist and Stahel 

(2011). 

 

As the two-tier gamma regression involves a mixture of two shifted gamma distributions, 

maximizing its log likelihood function is quite challenging.  

 

3. Summary of Empirical Results 

 

To facilitate model performance comparison, we use the same data set as in Qi and Zhao (2011) 

with the same explanatory variables. This data set is based on Moody's Ultimate Recovery 

Database, which covers U.S. corporate default events with over $50 million in debt at the time of 

default. There are a total of 3,751 observations from 1985 to 2008. Refer to Qi and Zhao (2011) 

for a more detailed description of the data construction and summary statistics. It is worth noting 

that 30 percent of the observations in the sample have LGD values equal to 0, and 6 percent of 

the observations have LGD values equal to 1. 

 

We describe in this section the estimation results from different modeling methods for LGD 

using the same set of explanatory variables in all models. In all the models, we use subordinated 

bonds as the base instrument and “most assets” as the base collateral type. Also, to be 

comparable with Qi and Zhao (2011), we present in-sample and out-of-sample (i.e., 10-fold cross 

validation) results for each method. As a benchmark, Qi and Zhao (2011) report the in-sample 

R-squared for the linear regression and the FRR as 0.448 and 0.463, respectively, and the out-of-

sample R-squared as 0.443 and 0.457, respectively. 
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3.1 Refined Transformation Regressions 

 

3.1.1 Improved Retransformation Methods—the Smearing and MC Estimators 

 

We follow Qi and Zhao (2011) and adjust the boundary LGD values by 𝜀 before transforming 

the adjusted LGDs to the real line and then applying the retransformation methods discussed in 

section 2.1.1. The same local adjustment factor values of ε  as in table 4 of Qi and Zhao (2011) 

are investigated. Table 1 reports the R-squared and sum of squared errors (SSE) from the naïve 

transformation method investigated in Qi and Zhao (2011), (i.e., ( )1 ˆˆ ;i iL h x aβ−= ), and from the 

smearing estimator and the MC estimator. Panel A shows the results for IGR and panel B shows 

those for IGR-BT.6,7 The in-sample results are shown in panels A1 and B1 and the out-of-sample 

10-fold cross-validation results are displayed in panels A2 and B2. The bolded rows represent 

the results corresponding to the optimal cutoffs for ε , where optimal is defined as the cutoff that 

leads to the highest R-squared values. 

 

These panels show that there is little difference in the results between the IGR and IGR-BT, a 

finding similar to that in Qi and Zhao (2011). The performance of the two retransformation 

estimators is much less sensitive to the choice of ε  than the naïve retransformation. The 

advantage of the retransformation estimators is the most obvious for small values ofε , and the 

discrepancies disappear at ε  values beyond 0.01. This is because the transformations (e.g., 

inverse Gaussian) are sensitive or very nonlinear at values close to 0 or 1 (i.e., small ε ), so 

properly accounting for nonlinearities with the smearing or the MC estimators yields more 

accurate predictions. On the other hand, the transformations are close to linear for values away 

from the boundaries (i.e., largerε ), and little difference exists between the naïve and the 

smearing (or the MC) estimators.  

                                                 
6 In IGR-BT, the two beta parameters are chosen so that the mean and variance of the beta distribution match the 
sample mean and variance of the original LGD data. After calibration, we use a beta (0.3104, 0.3751) distribution, 
which implies a mean and variance of 0.453 and 0.147, respectively. 
 
7 We have also investigated the inverse non-standard Gaussian, inverse non-standard Gaussian with beta 
transformation, and the logit transform regressions. The results are qualitatively similar and thus are not reported to 
save space. 
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In addition, the two retransformation estimators perform very similarly across every scenario, 

suggesting that the normality assumption in the MC estimator is not overly restrictive. The 

optimal ε  under the naïve approach is 0.05, but is 0.01 under both the smearing and MC 

estimators. Furthermore, the optimal values under the two retransformation estimators are 

slightly higher than those under the naïve approach. These methods perform better than the linear 

regression, but they still underperform the FRR. These conclusions hold for both in-sample and 

out-of-sample predictions.  

 

In summary, relative to the naïve estimator, the retransformation estimators are not as sensitive 

to different values of ε  and result in more stable R-squared and SSE values. The 

retransformation estimators are thus especially useful if the optimal ε  value is not stable across 

different subsets of the estimation sample. Therefore, although the retransformation estimators 

show only marginal improvement over the naïve approach, they are helpful when a modeler 

chooses to use these transformation methods but is unsure about the optimal adjustment factor. 

 

3.1.2 Transformation Regressions With Global Adjustment 

 

Table 2 reports the results from transformation regressions with global adjustment using a 

different adjustment factor 𝑏 that ranges from 1e-11 to 0.45.8 Results using IGR are reported in 

panel A, and those using IGR-BT are shown in panel B. As in Qi and Zhao (2011), there is little 

difference in the results between the IGR and IGR-BT at the optimal value of 𝑏 = 0.1. 

 

The model fit improves dramatically as b  increases from 1e-11 to 0.0001. As b  increases 

further, the performance continues to improve but at a declining rate until it reaches peak 

performance at around b = 0.1. These results hold both in sample and out of sample in the 10-

fold cross-validation. Note that the optimal value of b  under the global adjustment approach is 

                                                 
8 This adjustment method is undefined for 5.0=b . 
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much larger than the optimal local adjustment factor ε  of 0.05 as reported in Qi and Zhao 

(2011).  

 

Similar to the results in table 4 of Qi and Zhao (2011), the global adjustment method also 

performs poorly at very small values of b —it dramatically underperforms the linear regression 

at b = 0.001 and b = 0.005. Its performance catches up with that of the linear regression at b = 

0.05. At the optimal point of b = 0.1, the global adjustment approach marginally outperforms the 

peak performance of the IGR and IGR-BT under the local adjustment approach. Furthermore, 

these methods outperform the linear regression but underperform the FRR. Therefore, the 

transformation regressions are generally very sensitive to the adjustment factor, regardless of the 

local or the global adjustment method, and even at the optimum, they do not lead to superior 

performance.  

 

Note that the results in table 2 do not floor or cap the predicted LGDs. Applying the floor and the 

cap does not dramatically change the conclusions, except that the optimal point for b  goes up to 

0.2, and the in-sample and the 10-fold cross-validation R-squared are at 0.455 and 0.450, 

respectively, slightly higher than those reported in table 2 but still lower than those for the FRR. 

These results are not reported to save space.  

 

3.2 Models to Account for the Unusual LGD Distribution 

 

3.2.1 Two-Step Approach 

 

Table 3 reports the ordered logistic regression results from step 1 and the OLS results from step 

2. On one hand, the coefficient estimates from the ordered logit model are largely intuitive. Term 

loans, loans secured by inventory, accounts receivables, cash, and exposures with guarantees and 

to the utility industry are more likely to fall into the group with an LGD of 0. Unsecured loans, 

loans secured by capital stock, and third liens are more likely to fall into the group with an LGD 

of 1. Most macroeconomic and industry condition variables have statistically significant 

coefficients as expected. The signs of the coefficients from the ordered logit in step 1 are largely 
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consistent with those from the OLS in table 3 of Qi and Zhao (2011), with some differences in 

significance levels. This is not surprising, given the main difference between the two regressions 

is that the OLS models continuous LGD values, whereas the ordered logit models discrete LGD 

groups.  

 

On the other hand, there is much difference in the coefficient estimates from steps 1 and 2. For 

example, some seniority dummy variables have a change in statistical significance: the term 

“loan dummy variable” loses its significance, while the senior secure dummy gains statistical 

significance. Many of the collateral types also show changes in significance levels. For instance, 

equipment gains statistical significance, while inventory, accounts receivable, and cash lose 

statistical significance. These results are interesting, suggesting that some explanatory variables 

are important in explaining only the probability of LGD falling into the groups of 0, (0, 1), and 1, 

but not the LGD variations within (0, 1), and vice versa.9 Because of this flexibility, the two-step 

regression approach might outperform the OLS. 

 

Table 3 indeed shows that the two-step approach has higher R-squared and lower SSE values 

than the OLS, both in sample and in the 10-fold cross validation. The two-step approach, 

however, still slightly underperforms the FRR.  

 

Despite that the LGD prediction from the two-step approach is not bounded between 0 and 1 in 

theory, we find that only one of the predictions in our empirical exercise falls outside the 

boundary [0, 1].10 The two-step approach can be easily estimated using any standard statistical 

software, and we also find it intuitive. 

 

                                                 
9 For example, 50 percent of term loans have zero losses, and over 85 percent of debt is collateralized by inventory, 
accounts receivable, and cash experience zero losses. Therefore, these collateral types are important when predicting 
LGD=0, but may not be particularly important when predicting LGDs in (0, 1]. 
 
10 We did not apply a floor for this method in this paper. Alternatively, a transformation regression instead of OLS 
can be applied in the second step to ensure that all LGD predictions from the two-step approach are bounded 
between 0 and 1. The results are not expected to differ much given only one observation falls outside the [0, 1] 
boundary.  
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3.2.2  Inflated Beta Regression 

 

Results from the inflated beta regression are reported in table 4. Similar to the two-step results, 

much difference exists between the three sets of coefficient estimates. For example, the capital 

stock dummy and the equipment dummy are associated with lower probability of LGD being 0 

in equation (13) and also lower probability of LGD being 1 in equation (14). By contrast, the 

inventory, receivables, and cash dummy are connected with higher probability of LGD being 0 in 

equation (13) but also higher probability of LGD being 1 in equation (14). Such results suggest 

that the process governing the three equations in the inflated beta regression has some 

differences. As a result, the ordered logit model in the first step of the two-step approach might 

be too simplified. On the other hand, however, the variables that Qi and Zhao (2013) show to be 

the most critical factors in determining LGD, such as the seniority index and the industry 

distance-to-default, have consistent positive or negative correlation with LGD in all three 

equations. This suggests that the differences in the three equations in the inflated beta regression 

might be minor or caused by noise, and an ordered logit model might be sufficient. 

 

Table 4 shows that the inflated beta regression does not outperform the two-step approach, both 

in sample and out of sample based on the 10-fold cross-validation. Such a finding suggests that 

the differences reflected in equations (13), (14), and (15) in table 4 are not of first order 

importance, and resorting to a more complicated model like the inflated beta regression might 

not be necessary.  

 

3.2.3 Tobit Regression 

 

Table 5 reports the coefficient estimates from the Tobit regression, with censoring at 0 and 1. 

Some differences exist between this table and the OLS results in table 3 of Qi and Zhao (2011). 

For instance, the loan dummy parameter loses its statistical significance. In addition, several 

variables show major changes in the magnitude of the coefficient estimates. The coefficient for 

inventory, accounts receivable, and cash increases by more than 200 percent. These results show 

that accounting for censoring at both ends can change the relationship between LGD and the 
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explanatory variables quite dramatically. Although censoring at 0 and 1 are accounted for, the 

Tobit model outperforms the OLS only trivially, and it still underperforms the FRR. 

 

3.2.4 Censored Gamma Regression 

 

Results from the censored gamma regression are presented in table 6. Note that the variables 

with statistically significant signs are almost the same as the Tobit regression, and the model fit, 

both in sample and in the 10-fold cross-validation, is nearly identical in tables 5 and 6. This 

might indicate that the estimated shifted gamma distribution from our sample resembles a normal 

distribution; hence the censored gamma and Tobit models would behave similarly. Given the 

similarity in performance between the Tobit and censored gamma models, resorting to the more 

complicated model incorporating the gamma distribution for LGD modeling might not be 

necessary.  

 

3.2.5 Two-Tiered Gamma Regression 

 

The two-tiered gamma regression results are presented in table 7. It is clear that there are 

differences in the parameter estimates between the two latent variables. Sigrist and Stahel (2011) 

show that this model provides better model fit than the censored gamma regression, which is 

confirmed here. The improvement, however, is quite marginal, and this model still 

underperforms the two-step approach and the FRR. Such results again raise doubts on the value 

added by choosing more complicated LGD models over simpler ones. 

 

3.3 Distribution of the Actual and Predicted LGDs 

 

We plot in figure 1 the histogram of the actual and predicted LGDs from the various models 

investigated in this study. For the transformation regressions, since the results from IGR-BT and 

IGR are very close, we show only the histograms for IGR. In addition, the histograms shown in 

figure 1 are based on the optimal adjustment factor used in the transformation regressions (i.e., 
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ε  = 0.01 for the smearing and the MC estimators, 0.05 for the naïve estimator, and b = 0.1 for 

the global adjustment approach).  

 

It is clear from figure 1 that, although all methods yield some degree of bimodality, the 

predictive distributions differ from the distribution of the actual LGDs. In particular, the 

predicted LGDs are much more concentrated in the interval (0, 1) than at the peaks of 0 and 1 

compared with the actual LGD values and the proportion of LGD predictions falling in the 

[0.9, 1] bucket is particularly low. Such a pattern holds even for the models that are particularly 

designed to handle the unusual LGD distribution. This finding is consistent with that of Qi and 

Zhao (2011), again indicating the difficulty to adequately account for the bounded bimodal 

distributions.  

 

In addition, although the predicted LGDs from the two-step approach can be outside the range 

[0, 1] in theory, the top panel of figure 1 shows that only one of the fitted LGDs from this 

method actually falls outside the [0, 1] boundary. This finding suggests that the theoretical 

concern might not be a significant problem in practice. Figure 1 suggests that adding the floor of 

0 and cap of 1 in the global adjustment approach could better capture the bimodal distributions; 

however, the predictive distribution still falls short of the actual degree of the peaks. 

 

3.4 Model Performance, Complexity, and Computational Burden 

 

We summarize model performance, complexity, and computational burden of all the parametric 

LGD models discussed in this study in table 8. The models are sorted and ranked based on the 

in-sample SSE. To show the model stability, we also report model ranking based on the 10-fold 

cross-validation SSE. We assess model complexity and computational burden using the high, 

medium, and low ratings. 

 

Several observations can be made from table 8. First, all models we investigate in this study 

perform similarly within a very narrow range: less than two percentage points difference exist 

between the best and the worst performing models. For only the models considered in this paper, 



 

Economics Working Paper 2014-2 23 

the in-sample R-squared and SSE range from 0.449 to 0.458 and 298.673 to 303.748, 

respectively, and the out-of-sample R-squared and SSE are slightly worse, ranging from 0.444 to 

0.452 and 301.369 to 305.922, respectively. They all perform better than the OLS but worse than 

the FRR as reported in Qi and Zhao (2011).  

 

Second, across all these parametric models, complex or computationally intense models do not 

necessarily perform better than their simpler or less computationally intense counterparts. For 

example, the top two models are rated either low or medium in complexity and computation 

burden.  

 

Third, despite the desirable statistical properties of the new or recently proposed parametric LGD 

models investigated in this study, none of these models perform better than the nonparametric 

models investigated in Qi and Zhao (2011). Thus, the dominance of non-parametric LGD 

models, such as the decision tree and the neural network, remains unchallenged. It is also worth 

noting that some of these parametric models are more complex and computationally burdensome 

than the non-parametric models. 

 

These observations suggest that within the parametric models family, the more complex and 

computationally burdensome parametric LGD models might not have much value added in terms 

of model fit. Our analysis indicates that the best options are the fractional response regression 

and the two-step approach, both of which have the best model performance but are relatively 

simple and easy to implement without much computational burden. If model complexity and 

computational burden are not constraints, then nonparametric models, such as the decision tree 

and the neural network, might be better choices than their complex and burdensome parametric 

counterparts, such as the censored gamma and the IGR-BT with the MC estimator. 

 

4. Summary and Conclusions 

 

We conduct a comprehensive study of some new or recently developed parametric models for 

LGD, a semi-continuous random variable that lies in the interval of [0, 1] and that often follows 
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a bimodal distribution. The first group of models consists of three methods that we propose to 

refine the transformation regressions. These methods include a smearing estimator and an MC 

estimator for retransforming the transformation regression outputs to LGD predictions, and a 

global adjustment method for handling the boundary LGD values. The second group of models 

consists of five regression models suitable for the unusual distribution of LGD: a two-step 

approach, inflated beta, Tobit, censored gamma, and two-tier gamma.  

 

We find that the performance of the transformation regression with global adjustment is still 

sensitive to the adjustment factor. In addition, the smearing estimator and the MC estimator can 

help reduce the sensitivity of the transformation regression to the adjustment factor, and thus can 

be very useful if one would like to use the transformation regression but is not sure what 

adjustment factor to use. Even with these refinements and the optimal adjustment factor, 

however, the transformation regressions still do not drastically outperform the OLS, and they all 

underperform the FRR investigated in Qi and Zhao (2011). 

 

Among the second group, five regression models designed to fit the unusual distribution of LGD, 

the two-step approach is similar to the inflated beta regression but is simpler and theoretically 

less sound, while the censored gamma regression is similar to Tobit regression but is more 

complicated and theoretically more appealing. We find, however, that the two-step approach 

slightly outperforms all methods investigated in this paper in our sample, and the performance of 

the censored gamma regression is essentially the same as Tobit regression. The two-tiered 

gamma regression is the most complicated and computationally challenging, but it does not 

outperform the simpler two-step approach. Our findings suggest that complicated parametric 

models may not be necessary when estimating LGD. 

 

Despite the special design of each model to fit the unusual LGD distribution and the complexity 

in some of the models, all models investigated in this study tend to generate LGD predictions 

that are more concentrated between the two boundary values, and thus cannot reproduce the 

bimodal shape of the observed LGD distribution. This might be because the models investigated 

in this and other studies thus far produce mean LGD predictions, and it is difficult for these 

models to produce mean predictions that are far off in the tails. It may be fruitful for future 
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research to investigate prediction methods based on other quantiles or alternatives to mean 

prediction. The findings and conclusions of our study are based on one data set. The relative 

performance of various models is likely to change with different LGD data sets that have 

different sample sizes, distributions, and risk drivers; we intend to explore these scenarios in 

future research. 
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Table 1. Transformation Regression With Improved Retransformation 
 

 

 
  

Panel A: Inverse Gaussian Regression (IGR) 
Panel A1: In-Sample 

 
Naïve Smearing estimator MC estimator 

𝜺 R2 SSE R2 SSE R2 SSE 

1.00E-11 0.171 456.934 0.404 328.520 0.404 328.819 

0.000 0.327 370.845 0.438 309.608 0.437 310.475 

0.001 0.357 354.239 0.444 306.401 0.442 307.479 

0.001 0.372 346.286 0.447 305.006 0.445 305.929 

0.005 0.408 326.231 0.452 302.225 0.451 302.875 

0.010 0.424 317.389 0.453 301.662 0.451 302.397 
0.050 0.452 302.294 0.445 306.200 0.443 307.052 

0.080 0.450 302.926 0.435 311.665 0.432 313.343 

0.100 0.446 305.145 0.427 315.749 0.424 317.804 

0.200 0.406 327.276 0.383 340.393 0.374 344.979 

0.300 0.345 361.317 0.325 371.988 0.315 377.766 

0.500 0.165 460.335 0.167 459.456 0.158 464.117 
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Table 1. (Continued) 
 

Panel A2: 10-Fold Cross-Validation 

 
Naïve Smearing estimator MC estimator 

𝜺 R2 (Std) SSE (Std) R2 (Std) SSE (Std) R2 (Std) SSE (Std) 

1.00E-11 0.165 (0.089) 459.261 (13.968) 0.401 (0.058) 329.763 (9.514) 0.400 (0.053) 330.118 (8.486) 

0.000 0.322 (0.078) 373.340 (12.383) 0.435 (0.053) 311.080 (8.546) 0.431 (0.051) 312.962 (8.145) 

0.001 0.352 (0.075) 356.761 (11.866) 0.441 (0.052) 307.909 (8.279) 0.437 (0.050) 309.859 (7.908) 

0.001 0.366 (0.073) 348.819 (11.588) 0.443 (0.051) 306.528 (8.135) 0.441 (0.049) 307.729 (7.770) 

0.005 0.403 (0.068) 328.785 (10.750) 0.448 (0.048) 303.784 (7.698) 0.446 (0.047) 304.823 (7.430) 

0.010 0.419 (0.065) 319.946 (10.274) 0.449 (0.047) 303.237 (7.445) 0.447 (0.045) 304.507 (7.178) 
0.050 0.446 (0.056) 304.818 (8.722) 0.441 (0.042) 307.809 (6.596) 0.439 (0.041) 309.033 (6.491) 

0.080 0.445 (0.052) 305.418 (8.087) 0.431 (0.040) 313.284 (6.238) 0.426 (0.039) 315.781 (6.104) 

0.100 0.441 (0.050) 307.615 (7.744) 0.424 (0.039) 317.372 (6.043) 0.419 (0.039) 320.098 (6.045) 

0.200 0.401 (0.043) 329.623 (6.458) 0.379 (0.034) 342.026 (5.340) 0.370 (0.033) 346.617 (5.120) 

0.300 0.340 (0.038) 363.515 (5.531) 0.322 (0.030) 373.614 (4.973) 0.311 (0.030) 379.489 (4.535) 

0.500 0.161 (0.033) 462.141 (4.545) 0.163 (0.028) 461.039 (5.509) 0.156 (0.027) 464.668 (3.963) 
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Table 1. (Continued) 
 

Panel B: Inverse Gaussian Regression With Beta Transformation (IGR-BT) 
Panel B1: In-Sample 

 
Naïve Smearing estimator MC estimator 

𝜺 R2 SSE R2 SSE R2 SSE 
1.00E-

11 0.149 469.081 0.401 330.392 0.403 329.321 

0.000 0.313 378.836 0.437 310.536 0.435 311.481 

0.001 0.346 360.802 0.443 307.015 0.442 307.670 

0.001 0.361 352.098 0.446 305.464 0.445 305.881 

0.005 0.401 330.004 0.452 302.311 0.450 303.184 

0.010 0.419 320.220 0.453 301.614 0.451 302.605 
0.050 0.450 303.391 0.445 306.083 0.442 307.662 

0.080 0.449 303.840 0.435 311.625 0.431 313.815 

0.100 0.445 306.050 0.427 315.752 0.422 318.873 

0.200 0.404 328.404 0.383 340.387 0.372 346.089 

0.300 0.342 362.530 0.326 371.538 0.312 379.313 

0.500 0.164 460.968 0.171 457.057 0.161 462.631 
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Table 1. (Continued) 
 

Panel B2: 10-Fold Cross-Validation 

 
Naïve Smearing estimator MC estimator 

𝜺 R2 (Std) SSE (Std) R2 (Std) SSE (Std) R2 (Std) SSE (Std) 

1.00E-11 0.143 (0.090) 471.382 (14.093) 0.398 (0.059) 331.636 (9.695) 0.399 (0.053) 330.833 (8.444) 

0.000 0.307 (0.080) 381.317 (12.651) 0.433 (0.054) 312.003 (8.701) 0.432 (0.052) 312.857 (8.235) 

0.001 0.340 (0.077) 363.311 (12.128) 0.440 (0.052) 308.519 (8.416) 0.437 (0.051) 309.800 (8.191) 

0.001 0.356 (0.075) 354.619 (11.842) 0.442 (0.052) 306.984 (8.262) 0.440 (0.049) 308.523 (7.836) 

0.005 0.396 (0.070) 332.550 (10.972) 0.448 (0.049) 303.870 (7.795) 0.445 (0.048) 305.247 (7.696) 

0.010 0.413 (0.067) 322.772 (10.475) 0.449 (0.047) 303.187 (7.527) 0.447 (0.047) 304.536 (7.485) 
0.050 0.444 (0.057) 305.922 (8.865) 0.441 (0.042) 307.686 (6.646) 0.438 (0.042) 309.523 (6.566) 

0.080 0.443 (0.053) 306.345 (8.216) 0.431 (0.040) 313.236 (6.284) 0.425 (0.040) 316.287 (6.233) 

0.100 0.439 (0.051) 308.536 (7.867) 0.424 (0.039) 317.367 (6.090) 0.418 (0.038) 320.646 (5.935) 

0.200 0.399 (0.043) 330.779 (6.573) 0.379 (0.034) 342.013 (5.403) 0.369 (0.034) 347.629 (5.133) 

0.300 0.337 (0.039) 364.766 (5.650) 0.322 (0.030) 373.161 (5.053) 0.309 (0.030) 380.632 (4.521) 

0.500 0.159 (0.034) 462.823 (4.655) 0.167 (0.028) 458.644 (5.575) 0.156 (0.027) 464.989 (4.008) 
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Table 2. Transformation Regressions With Global Adjustment 
 

Panel A: Inverse Gaussian Regression (IGR) 

 
In-sample 10-fold cross-validation 

b R2 SSE R2 (Std) SSE (Std) 

1.00E-11 0.171 456.934 0.165 (0.089) 459.421 (13.958) 

0.0001 0.328 370.498 0.322 (0.078) 373.126 (12.359) 

0.0005 0.358 353.887 0.352 (0.075) 356.532 (11.833) 

0.001 0.372 346.017 0.366 (0.073) 348.668 (11.549) 

0.005 0.407 326.722 0.401 (0.068) 329.379 (10.702) 

0.01 0.422 318.585 0.416 (0.065) 321.239 (10.242) 

0.05 0.449 303.946 0.443 (0.057) 306.570 (8.950) 

0.08 0.452 301.831 0.447 (0.054) 304.441 (8.532) 

0.1 0.453 301.298 0.448 (0.053) 303.900 (8.332) 

0.2 0.453 301.641 0.447 (0.049) 304.229 (7.720) 

0.3 0.450 302.971 0.445 (0.047) 305.563 (7.393) 

0.45 0.448 304.232 0.443 (0.046) 306.834 (7.172) 

Panel B: Inverse Gaussian Regression With Beta Transformation (IGR-BT) 

 
In-sample 10-fold cross-validation 

b R2 SSE R2 (Std) SSE (Std) 

1.00E-11 0.111 490.334 0.105 (0.091) 492.748 (14.174) 

0.0001 0.310 380.364 0.304 (0.080) 382.983 (12.714) 

0.0005 0.346 360.552 0.340 (0.077) 363.189 (12.128) 

0.001 0.363 351.298 0.357 (0.075) 353.942 (11.810) 

0.005 0.403 329.021 0.397 (0.069) 331.674 (10.867) 

0.01 0.420 319.845 0.414 (0.066) 322.496 (10.361) 

0.05 0.449 303.923 0.443 (0.057) 306.545 (8.970) 

0.08 0.453 301.769 0.447 (0.054) 304.378 (8.533) 

0.1 0.454 301.256 0.448 (0.053) 303.857 (8.326) 

0.2 0.453 301.702 0.447 (0.049) 304.289 (7.706) 

0.3 0.450 303.032 0.445 (0.047) 305.624 (7.384) 

0.45 0.448 304.237 0.443 (0.046) 306.840 (7.172) 
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Table 3. Two-Step Regression 
 

 
Step 1 (Ordered logit) Step 2 (OLS) 

Explanatory variable Coefficient (SE) Coefficient (SE) 

Seniority index 4.747 (0.257)*** 0.347 (0.032)*** 

Revolvers -0.872 (0.248)*** -0.052 (0.031)* 

Term loans -0.524 (0.253)** -0.026 (0.032) 

Senior secured bonds  0.190 (0.272) -0.068 (0.034)** 

Senior unsecured bonds  -0.744 (0.169)*** -0.042 (0.019)** 

Senior subordinated bonds -0.165 (0.182) 0.022 (0.021) 

Junior bonds -0.188 (0.314) 0.044 (0.041) 

Capital stock 0.414 (0.188)** -0.028 (0.026) 

Equipment -0.049 (0.266) 0.115 (0.031)*** 

Guarantees -2.376 (1.079)** -0.427 (0.247)* 

Intellectual 1.225 (1.034) 0.282 (0.125)** 

Inter-company debt 1.385 (2.827) 0.363 (0.248) 

Inventory, receivables, and cash -1.462 (0.276)*** -0.107 (0.065) 

Other -0.831 (0.410)** 0.165 (0.077)** 

Unsecured 1.038 (0.209)*** 0.064 (0.027)** 

Second lien -0.138 (0.234) 0.101 (0.031)*** 

Third lien 1.919 (0.488)*** 0.067 (0.061) 

Industry distance-to-default -4.479 (0.981)*** -0.940 (0.130)*** 

Aggregate default rate 0.981 (0.604) 0.296 (0.080)*** 

Trailing 12-month market return -0.060 (0.029)** -0.015 (0.004)*** 

Three-month T-bill rate 0.216 (0.227) 0.206 (0.031)*** 

Utility dummy -1.769 (0.190)*** 0.004 (0.028) 

Intercept 
  

0.409 (0.050)*** 

0γ  0.446 (0.373)*** 
  

1γ  5.704 (0.387)***   

     

Observations 3,751  2,380  

R2 0.458 
   

SSE 298.673 
   

     

10-fold cross-validation 
    

R2 (Std) 0.452 (0.047) 
  

SSE (Std) 301.369 (7.504)     

 
*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. 

  



 

Economics Working Paper 2014-2 34 

Table 4. Inflated Beta Regression 
 

 
α: Equation (13) β: Equation (14) γ:Equation (15) 

Explanatory variable Coefficient (SE) Coefficient (SE) Coefficient (SE) 

Seniority index -4.385 (0.202)*** 4.749 (0.403)*** 1.663 (0.128)*** 

Revolvers 0.277 (0.144)** -0.571 (0.308)** -0.205 (0.102)** 

Term loans -0.026 (0.142) 0.098 (0.265) -0.094 (0.106) 

Senior secured bonds  -0.991 (0.162)*** -5.309 (0.719)*** -0.201 (0.113)** 

Senior unsecured bonds  -0.175 (0.154) -1.082 (0.188)*** -0.112 (0.071)* 

Senior subordinated bonds -1.138 (0.119)*** -0.638 (0.192)*** 0.149 (0.080)** 

Junior bonds -0.155 (0.294) -0.443 (0.276)* 0.228 (0.168)* 

Capital stock -0.467 (0.192)*** -2.762 (0.712)*** -0.070 (0.107) 

Equipment -0.129 (0.206) -1.297 (0.165)*** 0.237 (0.121)** 

Guarantees 2.215 (0.286)*** -0.204 (0.086)*** -1.343 (0.323)*** 

Intellectual -1.743 (0.513)*** 0.045 (0.014)*** 0.916 (0.129)*** 

Inter-company debt -1.008 (0.491)** 0.091 (0.010)*** 1.197 (0.253)*** 

Inventory, receivables, and 
cash 1.745 (0.221)*** 3.115 (0.566)*** -0.224 (0.145)* 

Other 0.923 (0.241)*** -0.889 (0.381)*** 0.505 (0.073)*** 

Unsecured -0.796 (0.132)*** 0.984 (0.345)*** 0.293 (0.101)*** 

Second lien 0.139 (0.217) 0.066 (0.458) 0.381 (0.126)*** 

Third lien -0.902 (0.175)*** 1.933 (0.384)*** 0.307 (0.188)* 

Industry distance-to-default 4.100 (0.544)*** -4.841 (1.845)*** -3.348 (0.257)*** 

Aggregate default rate -2.785 (0.400)*** -4.136 (0.614)*** 1.263 (0.208)*** 

Trailing 12-month market 
return 0.008 (0.029) -0.185 (0.045)*** -0.070 (0.016)*** 

Three-month T-bill rate -0.478 (0.211)** -1.002 (0.188)*** 0.981 (0.120)*** 

Utility dummy 1.776 (0.169)*** -0.988 (0.294)*** -0.101 (0.103) 

Intercept 1.453 (0.211)*** -3.824 (0.519)*** -0.680 (0.148)*** 

Phi (φ) 2.574 (0.026) 
    

       

Observations 3,751 
     

R2 0.455 
     

SSE 300.571 
     

       

10-fold cross-validation 
      

R2 (Std) 0.448 (0.048) 
    

SSE (Std) 303.600 (7.499)         

 

 *, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. 
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Table 5. Tobit Regression 
 

 
Censoring at 0 and 1 

Explanatory variable Coefficient (SE) 

Seniority index 0.924 (0.044)*** 

Revolvers -0.149 (0.043)*** 

Term loans -0.047 (0.044) 

Senior secured bonds  0.057 (0.047) 

Senior unsecured bonds  -0.086 (0.027)*** 

Senior subordinated bonds 0.029 (0.030) 

Junior bonds 0.009 (0.058) 

Capital stock 0.055 (0.036) 

Equipment 0.109 (0.045)** 

Guarantees -0.693 (0.227)*** 

Intellectual 0.374 (0.185)** 

Inter-company debt 0.526 (0.401) 

Inventory, receivables, and cash -0.330 (0.053)*** 

Other -0.128 (0.086) 

Unsecured 0.224 (0.038)*** 

Second lien 0.066 (0.042) 

Third lien 0.315 (0.084)*** 

Industry distance-to-default -1.357 (0.176)*** 

Aggregate default rate 0.393 (0.108)*** 

Trailing 12-month market return -0.018 (0.005)*** 

Three-month T-bill rate 0.176 (0.042)*** 

Utility dummy -0.307 (0.035)*** 

Intercept -0.056 (0.067) 

   

Observations 3,751 
 

R2 0.450 
 

SSE 303.282 
 

   

10-fold cross-validation 
  

R2 (Std) 0.445 (0.047) 

SSE (Std) 305.571 (7.545) 

 

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. 
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Table 6. Censored Gamma Regression 
 

Explanatory variable Coefficient (SE) 

Seniority index 0.035 (0.005)*** 

Revolvers -0.006 (0.003)** 

Term loans -0.002 (0.003) 

Senior secured bonds  0.002 (0.003) 

Senior unsecured bonds  -0.003 (0.001)** 

Senior subordinated bonds 0.001 (0.002) 

Junior bonds 0.000 (0.003) 

Capital stock 0.002 (0.002) 

Equipment 0.004 (0.002)** 

Guarantees -0.026 (0.012)** 

Intellectual 0.014 (0.011) 

Inter-company debt 0.020 (0.017) 

Inventory, receivables, and cash -0.012 (0.004)*** 

Other -0.005 (0.005) 

Unsecured 0.008 (0.002)*** 

Second lien 0.002 (0.002) 

Third lien 0.012 (0.005)*** 

Industry distance-to-default -0.051 (0.012)*** 

Aggregate default rate 0.015 (0.007)** 

Trailing 12-month market return -0.001 (0.000)** 

Three-month T-bill rate 0.007 (0.002)*** 

Utility dummy -0.012 (0.002)*** 

Intercept -5.124 (0.126)*** 

Alpha (α) 4350.793 (1085.157)*** 

Xi (ξ) 25.952 (3.262)*** 

   

Observations 3,751 
 

R2 0.449 
 

SSE 303.748 
 

   

10-fold cross-validation 
  

R2 (Std) 0.445 (0.047) 

SSE (Std) 305.636 (7.925) 
 

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. 

  



 

Economics Working Paper 2014-2 37 

Table 7. Two-Tiered Gamma Regression 
 

 
β: Equation (22) γ: Equation (23) 

Explanatory variable Coefficient (SE) Coefficient (SE) 

Seniority index 0.065 (0.010)*** 0.048 (0.008)*** 

Revolvers -0.005 (0.007) -0.008 (0.006)* 

Term loans 0.000 (0.008) -0.004 (0.006) 

Senior secured bonds  0.015 (0.008)** -0.012 (0.006)** 

Senior unsecured bonds  0.002 (0.005) -0.010 (0.004)*** 

Senior subordinated bonds 0.014 (0.007)** -0.003 (0.004) 

Junior bonds 0.003 (0.014) 0.000 (0.007) 

Capital stock 0.007 (0.005)* -0.002 (0.005) 

Equipment 0.004 (0.008) 0.011 (0.006)** 

Guarantees -1.330 (0.023)*** -0.056 (0.042)* 

Intellectual 0.024 (0.025) 0.030 (0.020)* 

Inter-company debt 0.767 (0.010)*** 0.040 (0.035) 

Inventory, receivables, and cash -0.022 (0.006)*** 0.008 (0.010) 

Other -0.015 (0.010)* 0.020 (0.012)** 

Unsecured 0.013 (0.006)** 0.009 (0.006)** 

Second lien -0.001 (0.006) 0.010 (0.006)* 

Third lien 0.016 (0.016) 0.017 (0.011)* 

Industry distance-to-default -0.063 (0.022)*** -0.104 (0.021)*** 

Aggregate default rate 0.041 (0.016)*** 0.013 (0.013) 

Trailing 12-month market return 0.000 (0.001) -0.002 (0.001)*** 

Three-month T-bill rate 0.007 (0.006) 0.016 (0.005)*** 

Utility dummy -0.027 (0.005)*** -0.003 (0.004) 

Intercept -4.991 (0.104)*** -4.929 (0.111)*** 

Alpha (α) 1462.067 (325.831)*** 
  Xi (ξ) 10.147 (1.205)*** 
       

Observations 3,751 
   R2 0.455 
   SSE 300.311 
        

10-fold cross-validation 
    R2 (Std) 0.450 (0.045) 

  SSE (Std) 302.820 (7.172)     
 
*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. 
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Table 8. Summary of Model Performance, Complexity, and Computational Burden of Alternative Models 
 

 
In-sample 10-fold cross-validation Complexity Computational 

burden 

 
R2 SSE Rank R2 SSE Rank  

 
FRR 0.463 296.120 1 0.457 298.600 1 Medium Low 

Two-step 0.458 298.673 2 0.452 301.369 2 Low Low 

Two-tiered gamma 0.455 300.311 3 0.450 302.820 3 High High 

Inflated beta 0.455 300.571 4 0.448 303.600 6 High High 

IGR-BT global 0.454 301.256 5 0.448 303.857 7 High Medium 

IGR global 0.453 301.298 6 0.448 303.900 8 Low Low 

IGR-BT smearing 0.453 301.614 7 0.449 303.187 4 Medium Medium 

IGR smearing 0.453 301.662 8 0.449 303.237 5 Medium Medium 

IGR naïve 0.452 302.294 9 0.446 304.818 11 Low Low 

IGR MC 0.451 302.397 10 0.447 304.507 9 Medium High 

IGR-BT MC 0.451 302.605 11 0.447 304.536 10 High High 

Tobit 0.450 303.280 12 0.445 305.571 12 Low Low 

IGR-BT naïve 0.450 303.391 13 0.444 305.922 14 Medium Medium 

Censored gamma 0.449 303.748 14 0.445 305.636 13 High High 

OLS 0.448 304.320 15 0.443 306.920 15 Low Low 
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Figure 1. Distribution of the Actual and Fitted LGDs 
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